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ON THE FORMULATION OF THE CONTACT PROBLEM OF ELASTIC PLASTICITY* 

YU.1. NYASHIN and S.A. CHERNOPAZOV 

A differential and a variational formulation of the problem of contact 
interaction between an elastic-plastic body and a rigid support are 
examined. Equations of the theory of plastic flow with isotropic 
hardening, which is a particular modification of the Il'yushin theory of 
elastic-plastic processes /l, 2/, are taken as governing relationships. 
A proof is presented of the existence and uniqueness of the generalized 
solution. To simplify the description the problem is considered in a 
Cartesian rectangular system of coordinates. 

Contact problems with governing relationships of the deformation theory of plasticity are 
presented in /3/. Variational formulations utilizing generalized governing relationships of 
plasticity are formulated in /4, 5/. However, the constraints mentioned there on the 
generalized governing relationships are obviously inadequate for the uniqueness of the 
soluton. 

1. Differential formulation of the probtem. A quasistatic strain process is considered 
for an elastic-plastic body occupying a domain 8 in R3 with a smooth boundary S. It is 
assumed that the displacements and the gradientsof the displacements are small,and consequently, 
the squares of the gradients as well as the rotations of body elements can be neglected, and 
the connection to the side of the rigid support is considered to be ideal and unilateral. The 
problem is formulated in a reference system fixed with respect to the rigid support. The 
Mises plasticity condition is taken as the loading surface. 

It is assumed that the domain under investgation Q can consist of two parts at each 
instant: Qe={XEQIUi(X)<OT} and $1:' = {xEs2[uoi(x)= UT}. Here Us is the stress intensity. 
Material strain occurs elastically in the domain Q'; in the general case the domain Qp con- 
sists of an active loading zone Q!'O and an unloading zone 51”’ , not known in advance and to 
be determined. 

The conditions governing the above-mentioned zones have the form (f =o,--,,., gij = afj&,,,): 

if ~~52" and gijdS<j < 0, then x E W', 
if XER" and g,.$S,j > 0, then x E Q"". 

We write the governing relationships in the domain P as 

dSij E 2G (deij--dhgij)> du=Kde (1.1) 

where do, de are increments of the mean pressure and the mean strain. The scalar factor dh 
equals zero in the domains Qe and W". In the domain RI" 
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dh = E,‘gij dSjj 

It is assumed that the tangential modulus E, /6/ satisfies the conditions 

a>&>k>O, J&E&.,(@') 

(1.2) 

(1.3) 

Taking relationship (1.2) as well as the conditions governing the zones Q*' and Qpa 
into account, we write the governing relationships for the factor dh in the form /7/ 

dh = 0 inQ' 

dh>O, Em dh - gij dSij > 0 

dh (E, dk - gij dSij) = 0 in Qp 

(1.4) 

(1.5) 

We will now describe the boundary conditions. In the general case the boundary S consists 
of three parts S = S, U S, U S,. The surface S, includes the actual contact surface and the 
zone of possible contact. 

To determine the part S, we assume that the boundary of the absolutely rigid support is 
described by the equation Y(x) = 0, where Y(x)<0 within the stamp and Y(x)> 0 outside. 

Henceforth, small displacements are considered throughout, and consequently, it is natural 
to refer the points S lying on the surface of the rigid support (these points form the actual 
contact surface S,) and the points S sufficiently closely located to the support, to S,. 
This can be done by defining equidistant surfaces by the equation Y(x) = C (C>O) then S, = 
1x E s IO \< y (x) < 8,). 
ations. 

Here E, is a fixed positive parameter found from physical consider- 
Using the function Y(x) we determine the surface of actual contact S, = {X E S, 1 

Y (x) = 0) and the domain of possible contact So = {XE S, 1 X ) 0 <Y(x)-< a,}. 
We assume that the body is not subjected to the action of surface forces on the surface 

So, i.e., Uijnj = 0 (nj are components of the unit vector of the external normal to S). 
Using the results in /8/, we write the condition of non-penetration on the surface S, in 

linearized form with respect to the desired function 

du, -< 6 

du, = v du, v = -grad Y (x)/lgrad Y(x)J, 6 = Y(x)/1 grad Y(x)1 

The quantity 6 defines the gap in the zone of possible contact SO (6 > 0) and in the 
zone of actual contact 6 = 0. 

Taking the above into account, we write the equations and boundary conditions of the 
problem in the form 

dcij,j + dFi =O in Q (1.6) 
doij = dS,j + 6ij do, do = 1/3K6,j d E ij, dSij z 2G(deij - gijdh) 

deij = dEij - 1/36ijSki dE,l, dEij = ‘12 (dui, , + duj, i) in Q (1.7) 
dui -0 on S,, dcijnj = dPi on S, (1.8) 

du, < 6, du,<6=+a,‘+do,=O, duv =6=+0,‘+ da,<0 

duT = 0 on S, (1.9) 
(do, =vdov, dor =dov- da,v) 

Appended to these relationships are (1.4) and (1.5) written for the domain 0". 
Here do is the stress tensor increment, u,,' = vo' v 

and of 
is the reaction of the rigid support, 

is the stress tensor at the time t. 
(JYl < 0 

In the zone of possible contact cyr =O while 
in the zone of actual contact. The state of the body at the initial instant is 

considered to be unstressed and unstrained, 
Let us determine the sets 

assuming in this case that II llzO = 0. 

M = {dv E (C* @Q31 dui = 0 on S,, dv, < 6 on S,} 

Q = {dpE L,(B)1 dp>O inPP, dp = 0 inV} 

We will call the pair of functions (du, dh)E M x Q, satisfying the equations and boundary 
conditions (1.4)-(1.9) the classical solution. 

We note that the relationships (1.4)-(1.9) enable us to connect the displacement u', 
strain E', and stress of 
E! + &,er+df = ot + do 

fields at the time t to the appropriate fields I#+~' =uL + du,Eftd' = 
at the time t + dt. 

2. Variational formitation. Let (du, dh) be the classical solution. We multiply the 
equilibrium Eq.tl.6) scalarly by dv - du, where dvE M, and we integrate over the domain 
Q. Then applying Gauss's theorem to the expression obtained and taking account of the 
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boundary conditions (1.8) and (1.9) and the first three governing relationships (1.7), we can 
obtain the inequality 

a(du,dv -du)- 12Ggij dhdeij(dv - du)dB -(f,dv -du> 20, (2.1) 

n (2.2) 
VdvEM 

a(du,dv)= S2Gde,j(du)deij(dv)dQ+ !3da(du)dE(dv)dS2 (2.3) 
n n 

(f* dv) = J dFi dvi dQ + i. dPi dv, dS, - S uV’ dv, dS, 
SC 

Using relationships (1.4) and (1.5), we form another inequality 

S (dp - dh) (E, dh - gij dS,j (du)) dS2 > 0, V dp E Q 
” 

(2.4) 

We introduce the notation 

dv = (dv, dk) E M x Q, du = (du, dh) E M x Q 

b (dp, dh) = s dp dh (E, + 2Ggijgij) d62 
R 

c (dp, dv) = S dp deij (dv) 2Ggij dS2 
n 

A (du, dv) = a (du, dv) + b (dp, dh) - c (dp, du) - c (dh, dv) 

Combining the inequalities (2.1) and (2.4) and using the notation assumed above, we 
obtain 

A (du, dv - du) - <f, dv - du) > 0, Vdv E M x Q (2.5) 

Let us examine the following problem: it is required to determine 

du E M x Q: A (du, dv- du) - (f, dv - du) > 0, Vdv E M x Q (2.6) 

It follows from the considerations presented above that if a classical solution of the 
problem exists, then it satisfies the variational inequality (2.6). 

The converse also holds. Let du be a solution of problem (2.6). Then du is a classi- 
cal solution. 

The proof is as follows. 
Setting dp=dh, we obtain inequality (2.1) from C2.6). Using 

relationships (1.7) (assuming here that the solution du satisfies it 
established from inequality (2.1) that the solution du satisfies the 
and the boundary conditions (1.8) and (1.9). 

Now we take dv = du. Then taking account of the third governing 

geometrical and physical 
exactly), it can be 
equilibrium Eqs.(1.6) 

relationship (1.7), 
inequality (2.6) takes the form (2.4). We‘ have d&=0 in the domain pe by the definition 
of the set Q. By virtue of the arbitrariness of the selection of du and the definition of 
the set Q, relationships (1.4) and (1.5) follow in the domain s2p from the inequality (2,4). 

Let us introduce the generalized solution of problem (2.6) into the consideration. We 
understand this latter solution to be the solution of the variational inequality (2.6) in a 
broader class of functions VxQ where 

V = {dv E (HI (Cl))3, dq = 0 on S,, dv, < 6 onS,} 

(H' (Q)Y is a Sobolev vector space, SE Cl. 
The proof of the existence and uniqueness of the generalized solution requires verification 

of the conditi.ons of the following theorem /9/. 

Theorem. Let U be a Hilbert space, A (dv, du) a coercive bilinear continuous form on 
U;VxQcU is a closed convex set, fE lJ*. Then a unique generalized solution of 
problem (2.6) exists. 

We introduce the space (2 (s2))3 ={dv E (Hl(SLl))31 dvj =O on S,}, U = (2 (n))3 x L,(Q). Norms 
in the spaces L,(Q), (2 (9))$ /lo/ and U 

II dp III.. = ( s (du)a da)"', 11 dv 1)~ = (1 dEij(dv)dEij (du)d0)"' 
R R 

II dv llu = (II dv llz' i- II dp Ild 2 ‘I, 
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and required below. 
The form A (dv, du) is linear in each argument. Let us confirm the boundedness property. 
It follows from relationship (2.2) that 

I a (dv, du) I < B II du llz II dv llz, V du, dv E (Z(61))s, 8 =E/(l - 2v) (2.7) 

where E is Young's modulus, and v is Poisson's ratio. 
After calculating the derivatives of the loading function, the inequality 

I 6 b-h d4 I Q Bx II WI I<, II dh lb,, VdL dp E L, 
fil = max E,, + 3G= a + 3G 

(2.8) 

can be established for the mapping of b(dM,dh). 
Now we prove the boundedness of the -mapping c (dp, dv). 
Applying the Cauchy inequality and performing a chain of manipulations, we obtain 

I C (dP* dv) I < II dP IIL* ( S [eij (dv) 2Ggijl’ dQ)“’ < Pa II dp (IL, II dv Hz 
P 

The inequalities (2.7), (2.8) and (2.9) enable us to obtain the estimate 

I A (du, du) I < .@,ll du Ilu II du llu, Vdu, du E U 
B3 = max (By PI9 &I 

(2.9) 

(2.10) 

Therefore, A (du, du) is a bilinear bounded and, consequently, continuous form on il. 
Let us confirm the coercivity condition. The inequality 

a(dv, dv)> &IIdv lIza, Vdv E@(Q))', I$ = E/(1 + v) = 2G (2.11) 

holds for the mapping a(dv, dv). 
Using inequalities (2.11) and (2.9) and the second inequality in (1.3), we perform a 

chain of manipulations 

A (dv,du)> 2G )Idv 11z2 + (A + 3GJlIdp IL." -- GI'B II& Ilslldv llz 2 

2G (1 dv lIza + (k + 3G) II dp lIza - G (3 + B*).ll dp lh” - 
G(2 -l/ap*)(ldv (Iza = '/eGB* Ildv llz” + (k - @*I II+ lls’v 

Vdvizu, vg*E [O, 11 

We take fi* = 2k/(3G). Then 

-4 (b, dv) > 86 II d~IIc+‘, Vdu E U, & = ‘i,k 

We require from the bulk and surface forces that FE U*. Therefore, all the conditions. 
of the theorem are satisfied and problem (2.6) has a unique, generalized solution. 

It should be noted that the numerical solution of problem (2.6) can be found by the 
finite element method in combination with the relaxation method. 

The authors are grateful to N.V. Trusov for his interest, comments, and useful discussions. 
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SLIP LINES AT THE CORNER OF THE INTERFACIAL BOUNDARY OF DIFFERENT MEDIA* 

L.A. KIPNIS 

A symmetric problem on the initial development of a plastic wave, 
simulated by two straight slip lines starting from the apex, near the 
corner of the interfacial boundary of different media is examined under 
plane strain conditions. The exact analytical solution is constructed 
for the Wiener-Hopf functional equation of the problem. A formula is 
deduced to determine the slip line length, and their slope to the 
interfacial boundary of the media is established. 

1. We consider the problem of the initial development of the plastic zone near a corner 
0 of the interfacial boundary of media (Fig.1) under plane strain conditions in a domain 
consisting of two homogeneous isotropic parts 1 and 2 with Young's moduli and Poisson's ratios 

-% ~1 and E,, vz, respectively. The problem is assumed to be symmetrical about the 
bisectrix of the corner. It is assumed that the plastic strains are concentrated along two 
straight slip lines starting from the apex,whose length is small compared with the body dimen- 
sions. 

Using the "microscope principle", we arrive at a plane static symmetric problem of 
elasticity theory of the class N /l/ for a piecewise-homogeneous plane with interfacial bound- 
ary of the media in the form of the sides 8 = fi and 8 = p - 2a (afZ]O; id2 [U] n/2; d) of an 
angle containing slip lines for f3=0, r(l and for 8=2@-a), r<l. An asymptotic form 
is realized at infinity that is the greatest solution, at infinity, of an analogous problem 
for a piecewise-homogeneous plane without slip lines that satisfies the stress decay condition 
at infinity. The latter is constructed by the method of singular solutions /l/ and is 
determined apart from an arbitrary constant C. This constant, that characterizes the external 
field strenath. is considered aiven. It is found from the solution of the external problem. < . 

the 

the 

It is required to determine the slip line length 1 and the angle p of their slope to 
interfacial boundary of the media. 
Confining ourselves to an examination of the half-plane p-a< 8< n. - cc + b, we write 
boundary conditions thus: 

8 = B, <d = <+ = 0, <ud = <d = 0 
e = p - a, e = n - a + p, ~~~ = 0, ue = 0 

e = 0, <oe> = <GO> = 0, <ue) = 0 

e = 0, T < I, 'crB = rl; e = 0, r> 2, <u,) = 0 

(1.1) 

(4.2) 

e=o, r-+Z+O, Z,e- 
kI1 

1/2n(r - 2) 
(1.3) 

e=o, r+Z-0, <%>- - *(l&Q) I’& 


